

Nationales Zentrum für Infektionsprävention Centre national de prévention des infections Centro nazionale per la prevenzione delle infezioni National Center for Infection Control

Point prevalence survey 2023 of healthcare-associated infections and antimicrobial use in Swiss acute care hospitals

Contributing authors:

PD Dr Walter Zingg Dr Ashlesha Sonpar Dr Aliki Metsini Mrs Zhang Zheng

February 2024

Contents

С	Contents 2				
Fi	Figures				
Та	Tables				
A	Abbreviations				
E>	Executive Summary				
1		Introduction	7		
	1.1	NOSO Strategy	7		
	1.2	Minimum requirements and PPS: milestones of the NOSO strategy	7		
2		PPS methodology and organisation	8		
	2.1	Objectives and methods	8		
	2.2	Material and train-the-trainer courses	8		
	2.3	Data management	8		
3		Implementation	9		
	3.1	List of participating hospitals	9		
4		Results 1	1		
	4.1	Hospital characteristics and most relevant indicators1	1		
	4.2	Healthcare-associated infections1	2		
	4.3	Antimicrobial use 2	3		
5		References	5		

Figures

Figure 1: NOSO strategy with the 5 action fields7
Figure 2: 2023 HAI-prevalence in all participating hospitals by attribution and current hospital stay 12
Figure 3: HAI-prevalence by intrinsic risk factors
Figure 4: HAI prevalence by hospital size, hospital type, ownership and University-affiliation
Figure 5: HAI prevalence by ward specialty15
Figure 6: SSI-prevalence in patients undergoing surgery and device-associated HAI-prevalence in
patients with medical devices during current stay16
Figure 7: HAI prevalence in all participating hospitals over time17
Figure 8: HAI prevalence over time in the subset of hospitals participating in all surveys
Figure 9: HAI types (distribution) in all participating hospitals over time19
Figure 10: HAI types (distribution) over time in the subset of hospitals participating in all surveys 20
Figure 11: Distribution of pathogens over time in all participating hospitals
Figure 12: Distribution of pathogens over time in the subset of hospitals participating in all surveys 22
Figure 13: AU prevalence by intrinsic risk factors 23
Figure 14: AU prevalence by hospital size, hospital type, ownership and University-affiliation
Figure 15: AU prevalence by ward specialty 25
Figure 16: AU prevalence over time in all participating hospitals
Figure 17: AU prevalence over time in the subset of hospitals participating in all surveys 27
Figure 18: Indications for antimicrobial use by hospital size 28
Figure 19: Indications for antimicrobial use 2022 and 2023 in all participating hospitals
Figure 20: Indications for antimicrobial use 2022 and 2023 in the subset of hospitals participating in
both surveys
Figure 21: Antimicrobial classes used by hospital size
Figure 22: Antimicrobial classes used by hospital type
Figure 23: Antimicrobial classes over time in all participating hospitals 32
Figure 24: Antimicrobial classes over time in the subgroup of hospitals participating in all surveys 32
Figure 25: Antimicrobial agents accounting for 75% of total antimicrobial use
Figure 26: Antimicrobial agents accounting for 75% of total antimicrobial use for therapeutic
purposes

Tables

Table 1: Participating hospitals by canton in alphabetic order	9
Table 2: Hospital characteristics	11

Abbreviations

ANRESIS	Swiss Centre for Antibiotic Resistance
AU	Antimicrobial use
BSI	Bloodstream infection
CABSI	Catheter-associated bloodstream infection
CAUTI	Catheter-associated urinary tract infection
CDI	Clostridioides difficile infection
COVID	Coronavirus disease
СН	Switzerland
CI	Confidence interval
CLABSI	Central line-associated bloodstream infection
CVC	Central venous catheter
FOPH	Federal Office of Public Health
HAI	Healthcare-associated infection
ICU	Intensive care unit
IPC	Infection Prevention and Control
IPCAF	Infection Prevention and Control Assessment Framework at the Facility Level
IQR	Interquartile range
LRTI	Lower respiratory tract infection
NEO	Neonatal infection
PPS	Point Prevalence Survey
PRIM	Primary care
PRIVFP	Private ownership, for-profit
PRIVNFP	Private ownership, not-for-profit
PUB	Public hospitals
PVC	Peripheral venous catheter
SEC	Secondary care
SPEC	Specialised care
SSI	Surgical site infection
SYS	Systemic infection
TERT	Tertiary care
UTI	Urinary tract infection
VAP	Ventilator-associated pneumonia
95%CI	95% confidence interval

Executive Summary

The year 2023 was marked as a period of early recovery from the COVID-19 pandemic. Although COVID-19 still affected health services, hospitals were transitioning to pre-pandemic functioning and many routine activities had resumed, including surveillance of healthcare-associated infections (HAI) and antimicrobial use (AU).

Point prevalence surveys (PPS) have been conducted annually since 2017, with the exception of 2020. The second national survey was successfully done in 2022, with 108 Swiss acute care hospitals submitting data on HAI and AU. In the beginning of 2023, Swissnoso called for voluntary participation in the yearly PPS, which remained free of charge thanks to financial support from the Federal Office of Public Health. Participation was significantly higher compared to previous years between the two national surveys (2018, 2019 and 2021). Seventy-six hospitals provided data on 10,236 patients.

HAI

In 2023, the overall HAI prevalence was 5.9% (95%CI: 5.4-6.4%) and 5.7% (95%CI: 4.8-6.6%) when only hospitals that participated in all surveys from 2017 to 2023 were included. The result was comparable to both national surveys in 2017 (5.9%) and 2022 (6.0%). No statistically significant trends were identified during the years, neither in the overall cohorts nor in the subset of hospitals participating in all surveys.

Antimicrobial use (AU)

One in three patients received at least one antimicrobial on the day of survey in 2023 (32.6%; 95%CI: 31.7-33.6%). This is consistent with previous years. Antimicrobial use in the subset of hospitals participating in all surveys however, was significantly higher both in 2022 and 2023 compared to previous years.

Over the years, no significant change was detected on the overall prevalence of HAI and AU. Stable proportions mean that the methodology is robust, and that the impact of COVID-19 on HAI was limited. However, they also mean that no improvement in HAI prevention or antimicrobial stewardship has been achieved. Two years ago, structural minimum requirements in the control and prevention of healthcare-associated infections in acute hospitals have been launched by the office of public health and Swissnoso. These requirements aim to standardise and improve the performance of infection prevention and control (IPC) in acute care hospitals. Since 2016, two national strategies on antimicrobial resistance have been conducted. StAR-1 aimed to produce treatment guidelines, to set the stage for antimicrobial stewardship and to produce guidelines on the prevention of multidrug-resistant microorganisms. StAR-2 expanded on the treatment guidelines and facilitated access to data on antimicrobial resistance. It started in 2023 and aims to implement antimicrobial stewardship in the hospitals. Future surveys will show whether minimal requirements on HAI-prevention combined with antimicrobial stewardship will result in a measurable decrease of HAI-prevalence and antimicrobial use.

1 Introduction

1.1 NOSO Strategy

NOSO strategy is the Swiss national programme for the surveillance, prevention and control of healthcare-associated infections. [1] It is based on the federal law on epidemics and contributes to the Federal Council's health policy strategy *Health2030*. The strategy has five fields of action: governance, monitoring, prevention and control, education and research, and evaluation (Fig. 1). With the aim to provide baseline data and to evaluate progress of the NOSO strategy, PPS belongs to the action field *Evaluation*.

1.2 Minimum requirements and PPS: milestones of the NOSO strategy

While PPS is part of the *Evaluation* action field of the NOSO strategy, the minimum requirements belong to the *Governance* action field (G-1: Standards and Guidelines). [2] These requirements are national recommendations, developed by a working group of Swissnoso and endorsed by relevant professional and political stakeholders. Since they were issued in January 2021, they were largely communicated to acute care hospitals though different channels, including a number of stakeholder workshops in which hospitals could verbalize their status of implementation. The WHO IPCAF survey 2022 revealed that Swiss hospitals do not outperform hospitals in other European countries. It can be concluded that the minimum requirements may not be fully implemented in all acute care hospitals, despite the fact that most cantons made them mandatory by service contracts. Swissnoso has finalized a self-assessment questionnaire on the Swiss structural minimum requirements in February 2024. This questionnaire allows IPC professionals to continuously evaluate of their IPC programme. [3]

Figure 1: NOSO strategy with the 5 action fields

NOSO Strategy	NOSO
---------------	------

Governance	Monitoring	Prevention and Control	Education and Research	Evaluation
G-1 Standards and Guidelines	M-1 National monitoring system	PC-1 Improving prevention and control	ER-1 Infection control in education and training	E-1 Baseline
G-2 Responsibilities and Structures	M-2 Targeted use of data	PC-2 Awareness and involvement	ER-2 Promoting infection control in research	E-2 Evaluation NOSO Strategy
G-3 Implementation support	M-3 Early recognition	PC-3 Learning and dialogue culture	ER-3 New technologies, quality assurance	
G-4 Knowledge management		PC-4 Support vaccination prevention		

2 PPS methodology and organisation

2.1 Objectives and methods

The objectives and methods the survey have remained the same as in the previous year without significant changes of the protocol. [4]

2.2 Material and train-the-trainer courses

Two training courses were organized online in German and French. All materials were available on the Swissnoso website and protocol changes were highlighted during the training sessions.

2.3 Data management

Data were collected from 1 April to 30 June 2023. Hospitals could choose to enter data into the database either manually or automatically using specifications provided by the coordinating centre. As in the previous year, automatic import was facilitated by a direct upload option in the database. Hospitals could download their data (without benchmarking) in different formats (HTML, CSV, pdf). Once completed, the national data were summarized and analysed using STATA version 13 (STATA Corporation), R and R studio. Hospitals received a set of slides with benchmarks to their relevant peers.

3 Implementation

3.1 List of participating hospitals

Seventy-six hospitals participated in the survey. The hospitals represented distinct hospital sites or hospital groups (Table 1).

Table 1: Participating hospitals by canton in alphabetic order

AG	Kantonsspital Baden AG			
	Spital Muri			
	Hirslanden Klinik Aarau			
BE	Insel Gruppe AG - Inselspital			
	Regionalspital Emmental AG – Spital Burgdorf			
	Spital Region Oberaargau – Spital Langenthal			
	Spitäler fmi AG - Unterseen			
	Spitäler fmi AG – Frutigen			
	Hôpital du Jura bernois SA – St-Imier			
	Hôpital du Jura bernois SA - Moutier			
	Hirslanden Bern AG, Beau-Site			
	Hirslanden Bern AG, Salem Spital			
	Hirslanden Bern AG, Klinik Permanence			
	Privatklinik Linde AG - Biel			
BL	Klinik Arlesheim AG			
BS	Universitätsspital Basel			
	St. Claraspital			
	Universitäts-Kinderspital beider Basel UKBB			
	Bethesda Spital AG			
	Felix Platter-Spital			
	Merian Iselin Klinik			
	REHAB Basel			
	Adullam Spital/Pflegezentrum Basel			
	Adullam Spital/Pflegezentren Riehen			
FR	Hôpital Daler – Daler Spital			
GE	Hôpitaux universitaires de Genève			
	Hôpital de La Tour			
	Clinique Générale-Beaulieu			
	Clinique de la Plaine			
GR	Spital Oberengadin			
LU	Luzerner Kantonsspital			
NE	Clinique Montbrillant			
SH	Hirslanden- Klinik Belair Schaffhausen			
SO	Solothurner Spitäler AG – Bürgerspital Solothurn			
	Solothurner Spitäler AG – Spital Olten			
	Solothurner Spitäler AG – Spital Dornach			
SZ	Spital Lachen AG			

	Spital Schwyz			
TG	Klinik Seeschau			
ті	EOC - Ospedale Regionale di Lugano Civico			
	EOC - Ospedale Regionale Bellinzona e Valli			
	EOC - Ospedale Regionale di Locarno			
	EOC - Ospedeale Regionale di Mendrisio			
	EOC - Ospedale Regionale di Lugano Italiano			
	EOC - Istituto Cardio Centro Ticino			
	Clinica Luganese SA			
	Clinica Santa Chiara SA			
UR	Kantonsspital Uri			
VD	CHUV			
	Etablissements Hospitaliers du Nord Vaudois – Site Yverdon-les-Bains			
	Etablissements Hospitaliers du Nord Vaudois – Site St-Loup			
	Ensemble Hospitalier de la Côte – Hôpital de Morges			
	Hôpital Riviera-Chablais Rennaz			
	Groupement Hospitalier de l'Ouest Lémanique – Hôpital de Nyon			
	Hôpital intercantonal de La Broye HIB - Payerne			
	Hôpital du Pays-d'Enhaut – Château D'Oex			
	Réseau Santé Balcon du Jura.vd – Sainte Croix			
	Groupement Hospitalier de l'Ouest Lémanique – Hôpital de Rolle			
	Clinique Bois-Cerf			
	Clinique de La Source			
	Clinique Cecil SA			
	Clinique de Genolier			
	Clinique CIC Riviera SA - Clarens			
	Pôle Santé Vallée de Joux – Le Chênit			
VS	Hôpital du Valais – Site de Sion			
	Clinique médico-chirurgicale de Valère			
	Clinique CIC Valais SA - Saxon			
ZH	UniversitätsSpital Zürich			
	Kantonsspital Winterthur			
	Spitalverband Limmattal			
	GZO AG - Wetzikon			
	Spital Bülach AG			
	Universitätskinderspital Zürich - Eleonorenstiftung			
	Spital Männedorf AG			
	Privatklinik Bethanien			
	Privatklinik Lindberg			

4 Results

4.1 Hospital characteristics and most relevant indicators

Fifty-seven of the 76 participating hospitals were small size hospitals, 13 medium-size, and six largesize hospitals. All adult, mixed and children university hospitals participated. Table 2 summarizes details of the participating hospitals.

Table 2: Hospital characteristics

	Hospitals, N	Patients, N
Total	76	10,263
Large hospitals (>650 beds)	6	4,195
Medium size hospitals (200-650 beds)	13	2,664
Small size hospitals (<200 beds)	57	3,404
Adult/mixed University hospitals	5	3,780
Paediatric University hospitals	2	178
Primary care hospitals	36	2,350
Secondary care hospitals	23	2,855
Tertiary care hospitals	9	4,554
Specialized hospitals	6	326
Free-standing Paediatric hospitals	2	178
Public hospitals	36	7,729
Private non-for-profit hospitals	22	1,626
Private for-profit hospitals	17	817

February 2024 Point prevalence survey 2023 12/35

4.2 Healthcare-associated infections

The overall HAI-prevalence in Swiss acute care hospitals was 5.9% (95%CI: 5.4-6.4) (**Fig. 2**), of which 5.1% (4.7-5.5%) were attributable to the hospital, and 4.0% (3.6-4.4%) occurred during current hospital stay.

HAI-prevalence depends on intrinsic (patient-related) risk factors. Higher risk factors are identified for male gender, poorer prognosis (ultimately and rapidly fatal outcome) and age (**Fig. 3**).

HAI-prevalence depends on hospital size, hospital type, ownership and whether a hospital is University-affiliated (**Fig. 4**). Risk are mainly explained by differences in patient case mix and the provision of care. Larger tertiary care hospitals have a higher case-mix, offer more intensive care capacity and perform more complex interventions. This is particularly true for University-affiliated hospitals.

Intensive care has the highest and gynaecology/obstetrics has the lowest HAI-prevalence (**Fig. 5**). Reasons for the extremes are a high case-mix and complexity of care in intensive care on one side, and younger, generally healthy women with a short hospital stay time on the other hand.

Interventions such as surgery and the use of invasive medical devices are a risk factor for HAI. Figure 6 summarises the prevalence of HAIs associated with surgery (SSIs) or the use of medical devices such as intravascular catheters, urinary catheters and mechanical ventilation.

Figure 7 summarises the trend of HAI-prevalence since 2017 in all participating hospitals. No significant trend was identified.

Figure 7: HAI prevalence in all participating hospitals over time

Figure 8 summarises the trend of HAI-prevalence since 2017 in the subset of hospitals (N=9) participating in all surveys. No significant trend was identified despite an outlier in 2022.

HAI-prevalence 2017 - 2023 Hospitals participating in all surveys 7 -6 Patients with ≥1 HAI (%) 5 4 3 2 -1-0 2017 2018 2019 2021 2022 2023

Figure 8: HAI prevalence over time in the subset of hospitals participating in all surveys

Figures 9 and 10 summarise the trends of HAI-types (as distributions) over time; the most common infection types were surgical site Infections (SSI) and lower respiratory tract infections (LRTI), followed by urinary tract infections (UTI) and bloodstream infections (BSI).

Figure 10: HAI types (distribution) over time in the subset of hospitals participating in all surveys

Figures 11 and 12 are summarise the distribution of pathogens, which were microbiologically identified in HAI over time. In 2023, 64% of HAI were microbiologically documented.

Figure 11: Distribution of pathogens over time in all participating hospitals

Figure 12: Distribution of pathogens over time in the subset of hospitals participating in all surveys

February 2024 Point prevalence survey 2023 23/35

4.3 Antimicrobial use

The use of antimicrobials depends on intrinsic (patient-related) risk factors. More antimicrobial use was identified for male gender, poorer prognosis (ultimately but not rapidly fatal outcome) and age (**Fig. 13**).

Total antimicrobial use does not depend on hospital size, hospital type, ownership and whether a hospital is University-affiliated (Fig. 14). Only specialized hospitals had a lower proportion of patients who received antimicrobials. Most of these hospitals offered specialized elective surgery, and antimicrobial use represents pre-operative prophylaxis.

In intensive care and surgical wards, one in two patients receives one or more antimicrobials on the day of survey (**Fig. 15**). In surgical specialties, antimicrobials are used predominantly for surgical prophylaxis while in internal medicine, paediatrics and mixed wards, antimicrobials are used for therapeutic purposes.

Figures 16 and 17 summarise antimicrobial use over time in all participating hospitals and in the subset of hospitals (N=9) participating in all surveys. No significant trend was identified on overall results. In the subset of hospitals participating in all surveys, there was a significant trend towards higher proportions of patients receiving one or more antimicrobials on the day of survey in the past three years (IRR: 1.03; 95%CI: 1.02-1.04).

Figure 17: AU prevalence over time in the subset of hospitals participating in all surveys (Statistically significant trend – IRR: 1.03; 95%CI: 1.02-1.04)

Figure 18 shows the indications for antimicrobial use by hospital size. Middle-size and large hospitals use more antimicrobials for therapeutic purposes while small hospitals use more antimicrobials for surgical prophylaxis. This is due to the higher proportion of surgical patients in small-size hospitals (41%) compared to middle-size (35%) and large (29%) hospitals.

Figure 18: Indications for antimicrobial use by hospital size

Figures 19 and 20 show the indications for antimicrobial use in 2023 compared to 2022 in all participating hospitals and in the subset of hospitals participating in both surveys (N=62).

Figure 19: Indications for antimicrobial use 2022 and 2023 in all participating hospitals

Figure 20: Indications for antimicrobial use 2022 and 2023 in the subset of hospitals participating in both surveys

Antimicrobial use by antimicrobial classes (distribution) and by hospital size and type are shown in **Figures 21 and 22**. The proportion of cephalosporins in small and primary care hospitals is high because of their higher proportions of surgical patients with pre-operative prophylaxis. Large hospitals, particularly University-affiliated hospitals, have a significant proportion of Cotrimoxazole due to medical prophylaxis in immunocompromised patients. Similarly, the proportion of "Other antimicrobials" is higher in large and tertiary care hospitals because of using reserve antimicrobials to treat infections due to multidrug- or extremely drug-resistant microorganisms.

Figure 22: Antimicrobial classes used by hospital type

Antimicrobial use by antimicrobial classes (distribution) over time are shown in **Figures 23 and 24**. In the subset of hospitals participating in all surveys (N=9), the proportion of "Other antimicrobials" is increasing over time. This group includes 2 University-affiliated, tertiary care hospitals, 2 secondary care middle-size hospitals and 4 primary care small-size hospitals. It can be speculated that the increase of "Other antimicrobials" in this subgroup is an indicator of emerging resistance, necessitating the use of reserve antimicrobials.

Figure 24: Antimicrobial classes over time in the subgroup of hospitals participating in all surveys

Figures 25 and 26 summarize the antimicrobial agents accounting for 75% of total antimicrobial use (DU75) – Figure 25 for all antimicrobial use, figure 26 for antimicrobials used for therapeutic purposes. CoAmoxicillin is the most commonly used drug, followed by Ceftriaxone, Cefuroxime and Piperacillin-tazobactam. Cefuroxime is used predominantly for pre-operative prophylaxis and Cotrimoxazole predominantly for medical prophylaxis.

Figure 26: Antimicrobial agents accounting for 75% of total antimicrobial use for therapeutic purposes

5 References

- 1. Federal Office of Public Health (2016). NOSO strategy In brief (brochure), <u>https://www.bag.admin.ch/bag/en/home/das-bag/publikationen/broschueren/publikationen-uebertragbare-krankheiten/publikation-strategie-noso.html</u>
- 2. Swissnoso (2022). Minimum requirements in Swiss acute care hospitals, https://www.swissnoso.ch/fr/recherche-developpement/strukturelle-mindestanforderungenhai/ueber-die-strukturellen-mindestanforderungen
- 3. WHO (2018). Infection prevention and control assessment framework at the facility level (IPCAF). https://www.who.int/publications/i/item/WHO-HIS-SDS-2018.9
- 4. Swissnoso (2022). Nationaler Bericht Punktprävalenz-Erhebung 2022, https://www.swissnoso.ch/module/punktpraevalenz-erhebung-hai/resultate